Randem processes
(1) Need senerato psendo rendem numbes Plestrof of algorithm ant there that will do thes for as
One of the matt famory is called a Linew Congrientral scopence (CCS) Fomarsi yss, Alho simple albeit

How does on LCS worl Consider the flllowing equation

$$
\tilde{x}=(a x+c) \% m \quad \int L C S
$$

where a, c, x, m are inlergers

$$
\text { Nead to pich a seed it } x_{0}
$$

The sequence is completeff detaministic
The algorithm is estromeff simple and fine far simple potalems

Is prairie people we whats called the mersenge twister ulgoritlys ct think the bresic python inplemenlates uses MT)
def $\operatorname{CCS}(N, a, c, m)$:

$$
\begin{aligned}
& x_{-a r y}=[] \\
& x=687
\end{aligned}
$$

for ; in raze (N) :

$$
\begin{aligned}
& x=(a * x+c))^{\%} m \\
& x \text { _orrag.append }(x)
\end{aligned}
$$

return x-array

Non-Uniform Darden Numbers Lout weell wa discened uniform vevactor rendom numbereserating but numbers is the interule [0, 1] generator coneal ve finforn scenden want is Yen example indern cendon numbers thint fallew sme ditibibitan $p(x)$ y ρ eo $=A_{e} e^{-t}$
Supsose you you have a sowce of vandan

Sungose
$x=x(z)$ that you hove a furdton $x=x$ (2)
Then, by defritam, whes y^{2} is a rendem number so is $x(z)$ bit with aritian $p(x)$
Ow goal then is to chose a femetome $x(2)$ so that x har ithe olsti.inton

So in this case the probublity generaterp a value of x between qo x and $x+d_{2}$. value of pion in tif comesponding a
a inteval io

Tronsfemateon Methad
Use unform varide rendem nombers to generote now-unform randem numbers
inlegrativs equaten (1) giner as

$$
\begin{align*}
& \int_{-\infty}^{z} g(z) d z=z \quad\binom{\text { venerk } k z}{\text { wifom verdte }} \\
& \therefore=\int_{-\infty}^{x(z)} p(x) d x \quad \text { (2) } \tag{2}
\end{align*}
$$

So now of ve can do thas intogral then we we in oyoeat shape. Unficaratb we can ravely do ths itofol thangh thers are centers circuncteriver ible e
it dass wark al we call tw nettrod tes trenfomathe neithed

Suppore we wint to sereadet rondem real numbers x in the interval from eevo to x inspo with no empenertal probulilify abil bivition

$$
\begin{equation*}
p(x)=\mu e^{-\mu x} \tag{3}
\end{equation*}
$$

Let's now taho toro aspates (3) and sul inte eqpation (2)

$$
\begin{aligned}
z & =\int_{-\infty}^{x(2)} \mu e^{-\mu x} d x \\
& =\left.\frac{\mu e^{-\mu x}}{-\mu}\right|_{-\infty} ^{x(2)}=1-e^{-\mu x}
\end{aligned}
$$

$\omega \quad z=1-e^{-\mu x} \quad$ (4)

$$
x=-\frac{1}{\mu} \ln (1-2)
$$

Gamsian Radem Nombers
A commen proflem in physizs ib tes question of distimbutcon thent are gawesion

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(\frac{-x^{2}}{2 \sigma^{2}}\right)
$$

Applyng, equatten (I) (ie Tho emiforintan method, we get

$$
z=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{-\infty}^{2} \operatorname{ers}\left(\frac{-x^{2}}{2 \sigma^{2}}\right) d z
$$

Problem no Analyter Salution
In this cuee we need to cyely tricls triat allaw us to use the tronsformateon metrod in a roundaloit way
Imagind in this case ve have thwo inclependent randan numbers x, y. botb chown from a gom gowsion distributros (sumfleviation y) witts the sene stenderl

The probability that the paint wits position vector (x, y) falls in some small element dxdy is given by

$$
p(x) d x p(y) d y=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{x^{2}+y^{2}}{2 a^{2}}\right) d x d y
$$

Now for our second trick switch th polar coordinates (befit as excercie)

$$
\begin{aligned}
p(r, \theta) d r d \theta & =\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right) r d r d \theta \\
& =\frac{r}{\sigma^{2}} \exp \left(\frac{-r^{2}}{2 \sigma^{2}}\right) d r \frac{d \theta}{2 \bar{\pi}} \\
& =p(n) d r p(\theta) d \theta
\end{aligned}
$$

Where $p(\mu)=\frac{\mu}{\sigma^{2}} \exp \left(\frac{-r^{2}}{2 \sigma^{2}}\right)$

$$
p(\theta)=\frac{1}{2 \pi}
$$

So new again we lave constractal a transformation. Generotery, $(4, \theta)$ is equivalent to yeeratery $(x y)$,
θ is trivial \Rightarrow uniform variate between O and 2π

For $\tilde{\text { It }}$ we must use a
method io

$$
\begin{aligned}
& \frac{1}{\sigma^{2}} \int_{-\infty}^{r} \operatorname{eap}\left(\frac{-r^{2}}{2 \sigma^{2}}\right) r d r \\
& \quad=1-\exp \left(\frac{-r^{2}}{2 \sigma^{2}}\right)=2
\end{aligned}
$$

$a \quad r=\sqrt{-2 \sigma^{2} \ln (1-2)} \quad\left(\begin{array}{l}i \text { we yeverde } \\ \sim \text { from } 2\end{array}\right.$
We stat need x (and y) of course

$$
\begin{aligned}
& x=r \cos \theta \\
& y=r \sin \theta
\end{aligned}
$$

ronter Carlo sn tagration anl Emprite somply
Besic Aproouls

$$
I=\int_{0}^{2} \sin ^{2}\left(\frac{1}{x(2 x)}\right) d x
$$

So jyou x an absuluth do the numerically Wity t io thallengine. Dhe eeaven beine is shat ire integral vorieg wildely MC integration an wank lithe is thess cass

How does BC intgratem sorll?
The besz icters is that we sample, ung ravdan sumbes, fto corea under Int interand. Say, bourling box so A, the the probulilit ing tex point' follows under intex and will be

$$
\rho=\frac{\lambda}{A}
$$

So then its integul is simply

$$
I=\frac{U A}{N}\left(\begin{array}{lll}
N & i & \text { ins nember of ponts } \tag{1}\\
\text { and } K & i s & \text { number of scoceses }
\end{array}\right)
$$

But we cen imprevo
Mean Value setheot
Covider ach sereal interrator prablem

$$
I=\int_{a}^{b} f(x) d x
$$

The Areage, value of (x) in the range (u, b) is ly defnitaxo

$$
\begin{aligned}
\langle b\rangle & =\frac{1}{b a} \int_{a}^{b} f(x) d x \\
& =\frac{I}{b a}
\end{aligned}
$$

or $I=(b-a)(b)$

Ithe we can estemate (b) acuraity
A simple wangle to estimater of the is to sample feo using rendem numbers io

$$
\begin{equation*}
\langle l\rangle \approx N^{-1} \sum_{i=1}^{N} f\left(x_{i}\right) \quad\binom{\text { where } x_{i} \text { 's we }}{\text { wiform veriato }} \tag{2}
\end{equation*}
$$

Then $I=\frac{d-a}{N} \sum_{i=1}^{N} f\left(x_{i}\right)$
The rest stem is of hild on tho $M V$ mettrod ily weghbing om diffeent velues we choose
Consider fellewins
Fr ung fincton g (o we an define a wergated average ons tor interval fram a to b as

$$
\begin{equation*}
\langle y\rangle_{\omega}=\frac{\int_{w}^{b} \omega(x) g(x) d x}{\int_{a}^{b} \omega(x) d x} \tag{3}
\end{equation*}
$$

where $w(x)$ is sane westit fuction

Now with thu in mind consider again to s $1-2$ integral

$$
I=\int_{a}^{b} f(x) d x
$$

setters $y(x)=\frac{f(x)}{w(x)}$
in equates (3) we set

$$
\begin{aligned}
\left(\frac{f(x)}{w(x)}\right) & =\frac{\int_{a}^{b} w(x) \frac{f(x)}{b} d x}{\int_{a}^{b} w(x) d x} \\
& =\frac{\int_{a}^{b} f(x) d x}{\int_{a}^{b} w(x d x} \\
& =\frac{\int_{a}^{b} w(x) d x}{}
\end{aligned}
$$

$$
\begin{equation*}
I=\left(\frac{f(x)}{w(x)}\right)_{w} \int_{a}^{b} w(x) d x \tag{4}
\end{equation*}
$$

So then ham do we calculab

$$
\int_{a}^{b} w(x) d x
$$

we an stent by defining a probability density

$$
\begin{equation*}
p(x)=\frac{w(x)}{\int_{a}^{b} w(x) d x} \tag{5}
\end{equation*}
$$

Let us sample N wander points x_{i} non-uniformely witt the density $p(x)$ and so for any function $g(x)$ we would get

$$
\sum_{i=1}^{N} g\left(x_{i}\right) \approx \int_{a}^{b} N p(x) g(x) d x
$$

or

$$
\begin{align*}
& =\int_{n}^{0} p(x y(x) d x \quad \text { (definition of } p \infty) \\
& \approx \frac{1}{N} \sum_{i=1}^{N} y(x) \tag{6}
\end{align*}
$$

Combine (4) and (6) to get

$$
I=\frac{1}{N} \sum_{i=1}^{N} \frac{f\left(x_{i}\right)}{w\left(x_{i}\right)} \int_{a}^{6} w(x) d x
$$

That is importing sampling. It set $w=1$, the
ven value method again.

Rootifinders
Syptems if Sineer esquations ($A_{x}=b$) we typrizats selved usong algor.thime
sun as

- Gaussin elimnateon
- LU dromporithoso (of A) $A=\angle U$ Pwo linguate conder
- QR decomposition (af A)

Here we will stâts methods for slung non-lineer systens. Namely, me loole at methods fe findens soots of functions
Nott that, if we hove a nelliocl
bere findins x such, that fox $=0$, the we an find x, such thent

$$
f\left(x^{\prime}\right)=b
$$

by findering roots of

$$
g(x)=f(x)-b
$$

3seettern Buttrod (1-clim Case)
This method worles ly selectsio an intferval which confinms a root of f and itaraterey cuttins titer inteval is half centil it neooms in on leto root

Steqs
(1) Stert with an interval pain of roots x_{1} and, x_{2} which brohet a root of and a terzet aceway S (minimum length of on interval)

Noito thant points x_{1} and x_{2} bruchet a noot if $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$ here grcesito sizn
(2) Computo tex midpaint x_{m}

$$
x_{m}=\frac{x_{1}+x_{2}}{2}
$$

(3) Compute $\mathrm{fm}=f(\mathrm{xm})$
(4) If $\mathrm{fm}_{\mathrm{m}}=0$ then sitop and return x_{m}
(5) If fm has ster same sizn as $f\left(x_{1}\right)$ then set $x_{1}=x_{m}$ else $x_{2}=x_{m}$
(6) If $\left|x_{1}-x_{2}\right|>\delta$ then repant stess (2) x (6) else stop and relen

$$
\frac{x_{1}+x_{2}}{2}
$$

Newton's Metrod
This methoel works ly ngenteelf appoximaters if as a straigat leno a coit impreve cunent estennente of a root
Stow
(1) Bogn witt on initial estemate of tro root x_{0}, a max numble of iteations and' a maximum numiteance
(2) Computto tho new estennate as

$$
x^{\prime}=x-\frac{b(x)}{f^{\prime}(x)}
$$

(3) If Iten number of iterition \rightarrow mex and

$$
f(x) \mid>\varepsilon
$$

then go bout to sifo (2)
(b) ontpilt x as censwer
secent mettrad
This mettiod io essententh stes same as rewtow methad, lit sion de vature of f is iglared witts fto numerical diflivatue of (ingeld when f' is diflicalt it computb)

Recall $f^{\prime}\left(x_{2}\right) \approx \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$
So tho update stop in the secant method looks like

$$
x_{3}=x_{2}-f\left(x_{2}\right)\left(\frac{x_{2}-x_{1}}{f\left(x_{2}\right)-f\left(x_{1}\right)}\right)
$$

where x_{y} and x_{2} ore previous Note that this method beans with 2 values x_{0} ant x_{1} undithe Newtons methods.

Masma al Mrising of functivers Its ifter the case of computen modellin turt we vent at find to minimun of some furdtos $f(x)$
Generally spahing we con putst talko the pertial denvathe
(0) $\frac{\partial f_{\infty}}{\partial x}=0$
and find the mimum that vey
Hewerer numerially the in't allnays possible or pechy cavraient. senetime we ruxt, hure datar pints and no eacolt fundtion. So semettins ve reed onother method

Galek Rato seach

(1) For given posistem of tis firsty and last points x_{1} ad x_{4}, IEt in ins intwion posints should be symmetr zooly distint aboint en midpoint of tes interval
ie $x_{2}-x_{1}=x_{4}-x_{3}$

(2) To fix x_{2} and t_{3} we need same adelistepal infrmation what we do set w the proceduve swh trot the rabto betwee the wittb of to browheter intervalp is tor same befae and ofte tes rext sitg
Before, $z_{0}=\frac{x_{4}-x_{1}}{x_{3}-x_{1}}=\frac{x_{2}-x_{1}+x_{3}-x_{1}}{x_{3}-x_{1}}$

$$
\begin{equation*}
=\frac{x_{3}-x_{1}+x_{2}-x_{1}}{x_{2}-x_{1}}=\frac{x_{2}-x_{1}}{x_{3}-x_{1}}+1 \tag{2}
\end{equation*}
$$

Affer, $z_{A}=\frac{x_{3}-x_{1}}{x_{2}-x_{1}}$

Equate the before and after stops st

$$
\begin{aligned}
& z_{A}=z_{B} \\
& \Rightarrow x_{3}-x_{1}=\frac{x_{2}-x_{1}}{x_{3}-x_{1}}+1 \\
&=\frac{1}{2}+1
\end{aligned}
$$

$10==\frac{1}{2}+1$

$$
z=\frac{1+\sqrt{5}}{2} \approx 1.618
$$

(1) Choose tho initial points x_{1} and x_{4}. Then calculator x_{2} and x_{3} accords At for golden otto. Io the you a calculator

$$
\begin{aligned}
& x_{2}=f\left(2, x_{1}, x_{4}\right) \\
& x_{3}=f\left(2, x_{1}, x_{4}\right)
\end{aligned}
$$

(2) If $f\left(x_{2}\right)<f(x)$ the the minimum lies lecmeen x_{1} all x_{3}
Set $x_{4}=x_{3}$

$$
x_{3}=x_{2}
$$

and caleulato tet rew x_{2} uning Tts golden catos x_{1} remain to same
(3) Else $f\left(x_{2}\right)>d\left(x_{3}\right)$

In the cose the minimum lis belven x_{2} and x_{4}
Lhen et

$$
\begin{aligned}
& x_{1}=x_{2} \\
& x_{2}=x_{3}
\end{aligned}
$$

and calculaty the rew x_{3} using tot gollen ratio, x_{4} remaus, ith same
(4)Centerive thes iteatien untsl

$$
\left|x_{4}-x_{1}\right|<\text { Theshald }
$$

One this theshall is reachal tov
minimum io

$$
\left.\frac{1}{2}(x)+x_{4}\right)
$$

(5) Befare attempting to calculato

$$
\begin{aligned}
& x_{2}=f\left(2, x_{1}, x_{4}\right) \\
& x_{3}=f\left(2, x, x_{4}\right)
\end{aligned}
$$

Numaical istegratien
Tapezorlal Rule
Simproms Rule
Gewsyon quad aturno
Enfinist integrals
Trupezoidal Rule (npitrapz)

For tor tragesoidal unle the demein The inteseqtien is diridel int ios eegments.

$$
\frac{b-a}{N}=h
$$

The crea of eah trapegord is given by

$$
A_{k}=\frac{1}{2} h[f(a+(k-1) h)+f(a+k h)]
$$

and

$$
\begin{equation*}
I(a, b)=h\left[\frac{1}{2} f(a)+\frac{1}{2} f(b)+\sum_{k=1}^{N-1} f(a+k h)\right] \tag{1}
\end{equation*}
$$

Example

$$
I=\int_{0}^{2}\left(x^{2}-2 x+1\right) d x
$$

$$
\begin{aligned}
& N=10 \\
& a=0 \\
& b=2
\end{aligned}
$$

def $f(x)$:
return $\left(x^{+\infty} 4-2^{*} x+1\right)$

$$
\begin{aligned}
& h=\frac{l-a}{N} \\
& S=0.5^{8} \mathrm{f}(\mathrm{~m})+0.5^{\alpha} f(l)
\end{aligned}
$$

for K in range (I, N)

$$
s+=b\left(a+K^{\delta} h\right)
$$

Simpson's Rule
(scryy. interater. simpson)
We un do fitte using Simpere Rule which instand of weip trayesails ust sureebratero fucterm to suldivide The crea unde formala curve. Thx

$$
\begin{aligned}
I(a, b)=\frac{1}{3} h[f(a s & +f(b)+4 \sum_{k h k} f\left(a+k^{2} h\right) \\
& \left.+2 \sum_{k=k=k} f(a+k h)\right]
\end{aligned}
$$

Nox th or diflowet rums and dro that N must be even

Errors anl Alogntmy Integration
The trepezoid fule λ hamn is introduce errors of onder h^{2}
Sappose that the trom umlue of our intersal ax I and let os denalos our frist extomite using the trogegail rale with N_{1} stess ly II

Then
$I=I_{1}+c h_{1}^{2}$ (c some constent)
say we just increase N now

$$
I=I_{2}+c h_{2}^{2}
$$

Comlining tet previons in expartine we set that

$$
\begin{aligned}
I_{1}+c h_{1}^{2} & =I_{2}+c h_{2}^{2} \\
I_{2}-I_{1} & =c\left(h_{1}^{2}-h_{2}^{2}\right) \\
& =3 c h_{2}^{2} \quad\left(\text { cessuming } h_{2}=\frac{h_{1}}{2}\right)
\end{aligned}
$$

or $\varepsilon=\frac{1}{3}\left(I_{2}-I_{1}\right)=c h_{2}^{2}$
Thio ervor estimate set a lasss for adogive integrabten
Consicter the fellewing algarittm
(1) Choose en inital number stgos N, and decide on tho Leirget accuvaz fer a siren integral
(2) Calculato thy first aypoximation to
(3) Nauble the numbur of steps and calculato tero yolated integral using tat formula

$$
\left.I_{i}=\frac{1}{2} I_{i-1}+h \cdot \sum_{i=k<k}^{1, k,-1}\right\}
$$

(4) Calculate eror using

$$
\varepsilon=\frac{1}{3}\left(I_{i+1}-I_{i}\right)
$$

(5) Contenive unttl

$$
\varepsilon<\text { TARGET }
$$

Gaussian Anadratere Integration
So for we hure tatheel about the Tocpegarlal Rule ad fimpison's rule. In batts of theed cases, ore hive used fited paints at evaluate tes integral

Gaussion Cuadrature is siznificente nore pewerfil as ats pointo id cheoses are non-uniform and mene twilored so to prablem af hend

Camsion integration ves so calleal Legendre Palynanials \& construct tex fromework
Legendre Palgnomials

$$
Q_{k}(x)=\prod_{\substack{m-1, \ldots, N \\ m \times k}} \frac{\left(x-x_{m}\right)}{\left(x_{k}-x_{m}\right)}
$$

$Q_{x}(x)$ is a polynamial of degree $N-1$.
If e ivaluato $\operatorname{Cl}_{4}(x)$ at one of sample points $x=x m$ we get

$$
\left(\frac{x_{m}-x_{1}}{x_{n}-x_{1}}\right)\left(\frac{x_{m}-x_{2}}{x_{n}-x_{2}}\right) \cdots\left(\frac{x_{m}-x_{n}}{x_{n}-x_{n}}\right)=1 \text { if } u=m
$$

$$
a_{n}\left(x_{m}\right)=\delta_{4 m} \quad \text { (Mronedhe-delles) } \begin{gathered}
\text { pinction }
\end{gathered}
$$

So now lots' cossider fors function

$$
Q(x)=\sum_{n=1}^{N} f\left(x_{n}\right) \mathscr{C}_{n}(x)
$$

This finetion, $\varphi(x), i$ a limen combinativen (y) degree a N - 1) stenet rample point unstem $f\left(x_{4}\right)$ at eanh rample point

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\int_{a}^{b} \varphi(x) d x \\
& =\int_{a}^{b} \sum_{k=1}^{\infty} f\left(x_{a}\right) \varphi_{n}(x) d x \\
& =\sum_{n=1}^{N} f(x) \int_{a}^{b} C_{n}(x) d x
\end{aligned}
$$

$$
=\sum_{k=1}^{N} f\left(x_{1}\right) w_{k}^{T}
$$

Remarkably, using the technique, we an integrate any function for dy summing over $f(x a)$ at a sit
sample sample points and aspliging

The beats of this meithoal is that Att, weight be not depended on fix) and we on be compulat once fo ald $f(x)$

Example

$$
\int_{0}^{2}\left(x^{4}-2 x+1\right) d x
$$

from goursew impart souesxit
def fro

$$
\begin{aligned}
& \text { rotor } x^{4}-2 x+1 \\
& N=3 \\
& a=0 \\
& b=2
\end{aligned}
$$

\# Cufulints toto sample points and weights on d then ashy them it er

$$
\begin{aligned}
& x_{1} w=\operatorname{scussw}(N) \quad\left(\begin{array}{c}
\text { Storm vegas see } \\
\text { coly for lit nova } \\
{[-1,1 D}
\end{array}\right) \\
& x p=0.5^{*}(b-a)^{*} x+0.5^{*}(l+a) \\
& w p=0.5^{*}(b-a)^{*} w
\end{aligned}
$$

\# Areform integratien
$s=0$

$$
\begin{aligned}
& \text { for } U_{\text {in }} \operatorname{rarge}(N)_{i} \\
& S_{t}=\operatorname{up}[u]^{\infty} f(x p[K]) \\
& \operatorname{print}\left({ }^{n} \mathbb{L}=\% g \quad " \%(S)\right.
\end{aligned}
$$

Infinito integrals
Not surpringhef computes cennat intograte y) AD infinity. Insfoad nhat we do itber we enployt a chase of varialues so trituhle to integral
Fer a integral are torb rage from 0 , to ∞ hles its stenderd crionge of variables is

$$
\begin{aligned}
& z=\frac{x}{1+x} \text { or equivalentf } \\
& x=\frac{2}{1-2}
\end{aligned}
$$

then

$$
\begin{aligned}
& d x=\frac{d z}{(1-z)^{2}} \\
& \int_{0}^{\infty} /\left(x d x=\int_{0}^{1} \frac{1}{(1-z)^{2}} \int\left(\frac{z}{1-z}\right) d z\right.
\end{aligned}
$$

Consider following integral

$$
I=\int_{0}^{1} e^{-t^{2}} d t
$$

We change tho variable

$$
x=\frac{2}{1-z} \quad d x=\frac{d z}{(1-z)^{\prime}}
$$

and tho integral becomes

$$
I=\int_{0}^{1} \frac{\exp \left(\frac{-z^{2}}{(1-z)^{2}}\right)}{(1-z)^{2}} d z
$$

ODE $=$ S
Runge Matta $4^{\text {th }}$ ader Scheme ondinco diflerentad equategy taxo fos form of an equation like

$$
\begin{equation*}
\frac{d x}{d t}=\frac{2 x}{t} \tag{1}
\end{equation*}
$$

Saling $O D^{2}=$'s (perticculerly secend ands and gizbe) ix vary common in computatuel pelhysers reary soluthos ease and mory th livories esist (er adeint in aythas) to salve equos equations pys you
The moit common frefeable in to we th so called gyrouch sibeme ar Runga kalen 4 sed Ru4 Rity con be used as part at of rulemen as uned many porth ith schemes. the, ist will we many othere schemes. espliz:

RK4 equaten:

$$
\begin{aligned}
& K_{1}=h f(x, t) \\
& K_{2}=h f\left(x+\frac{1}{2} K_{1}, t+\frac{1}{2} h\right) \\
& K_{3}=h f\left(x+\frac{1}{2} K_{2}, t+\frac{1}{2} h\right) \\
& K_{4}=h f\left(x+K_{3}, t+h\right) \\
& x(t+h)=x(t)+\frac{1}{6}\left(K_{1}+2 K_{2}+2 K_{3}+K_{4}\right)
\end{aligned}
$$

Supgose we want to solve

$$
\frac{d x}{d t}=-x^{3}+\sin t
$$

import numply us Ip import matuloblab, pprlat as plet

$$
\begin{aligned}
& a=0 \\
& b=10 \\
& N=10 \\
& h=\frac{l-a}{N}
\end{aligned}
$$

$$
\begin{aligned}
& \text { tpoints }=1 p \text { arcage }(a, b, N) \\
& \text { xpoints }=[]] \\
& x=0.0 \\
& \text { def } f(x, t): \\
& \text { return }-x^{3}+\sin (t)
\end{aligned}
$$

for t in tponts:
x points aspend (x)

$$
\begin{aligned}
& k 1=h((x, t) \\
& k_{2}=h b\left(x+0.5^{5} k 1, t+0.5+h\right) \\
& k 3=h f(x+0.5+k 2, t+0.5 * h) \\
& k 4=h /(x+k 3, t+h) \\
& x+=(k 1+2 * k 2+26 k 3+k 4) / 6
\end{aligned}
$$

plotiplot (Epoints, xpoints
plot. xluble
plts slabl
pltishew ()

ODE's, solving her infmito Ronges What iftrove wit it stacly in in ADity $O D E$ The is solvelf in exyif of seme ung as with intgratien
We prefarm a chenge of veriable We define for ase $t \rightarrow \infty$,

$$
n=\frac{t}{1+t}
$$

ar equivaluitf

$$
t=\frac{u}{1-u}
$$

and so as $t \rightarrow \infty, u \rightarrow 1$
Consider fallewing

$$
\begin{aligned}
& \frac{d x}{d t}=f(x, t) \\
& \frac{d x}{d u} \frac{d u}{d t}=f(x, t)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d u}=\frac{d t}{d u} f\left(x, \frac{u}{1-u}\right) \\
& \ln t \frac{d t}{d u}=\frac{1}{(1-u)^{2}} \\
& \left.\Rightarrow \frac{d x}{d u}=(1-u)^{-2} f(x) \frac{u}{1-u}\right)
\end{aligned}
$$

If we defoe a new function $g(x, u)$

$$
g(x, u)=(1-w)^{-2} f\left(x \frac{u}{i-w}\right)
$$

then $\frac{d x}{d u}=y(n y)$
and we sale this as before

ODES with move then ore variable Say we hove tit following

$$
\begin{aligned}
& \frac{d x}{d t}=x y-x \\
& \frac{d y}{d t}=y-x y+\sin ^{2} \omega t
\end{aligned}
$$

The solution here it to wite the oDis in reciter form, In the regard python is especially good.
10

$$
\begin{aligned}
& \frac{d x}{d t}=f_{x}(x, y, t) \\
& \frac{d y}{d t}=f_{y}(x, y, t)
\end{aligned}
$$

then we unite

$$
\frac{d r}{d t}=f(r, t)
$$

where $\sim=(x, y, \ldots)$
and of becmes a veetors of functers and we salve as lofore

Secand arde ODES
Secad grob ODES wre salval using tho same technieque as ODEs witts multeple variables is me ue nectos \&o salve ter equation
Cusider fallawng seend oder CDE

$$
\frac{d_{x}^{2}}{d t^{2}}=f\left(x, \frac{d x}{d t}, t\right)
$$

eg

$$
\frac{d x^{2}}{d t^{2}}=\frac{1}{x}\left(\frac{d x}{d t}\right)^{2}+2 \frac{d s}{d t}-x^{3} e^{-4 t}
$$

To thans ths ints a culbiranato equatims we defme

$$
y=\frac{d x}{d t}
$$

$$
\begin{aligned}
& \frac{d^{2}}{d t^{2}}=\frac{d y}{d t} \\
& y=\frac{d x}{d t}
\end{aligned}
$$

Lespfroy in tegratum
Consiler a pust ader ONE

$$
\begin{equation*}
\frac{d x}{d t}=f(x, t) \tag{1}
\end{equation*}
$$

- The lespfry mithod state alf vils a $\frac{1}{2}$ slap at ife molpoint
- Nert we have, a full steg to calculata $x(t+h)$ storting from $x(t)$
- Then for the rext half step me ccelllato it from the nidront value $x\left(t+\frac{h}{2}\right)$
i) $x\left(t+\frac{3 h}{2}\right)=x\left(t+\frac{h}{2}\right)+h f(x(t+h), t+h)$
in, this calculation $f(x(t+h), t+h)$
plums a ode of to gradint at tho modpoint betwen $t+\frac{b}{2}$ and $t+\frac{3 n}{2}$
- Next we would have

$$
x(t+\alpha h)=x(t+h)+h f\left(x\left(t+\frac{3 h}{2}\right), t+\frac{3 h}{2}\right)
$$

And we yo on igpentin, the proces as leng as λ requived. Avan values of $x(t)$ and $x\left(t+\frac{h}{2}\right)$ we igreatodfy assly ta equaterns

$$
\begin{aligned}
& x(t+h)=x(t)+h f\left(x\left(t+\frac{h}{2}\right), t+\frac{h}{2}\right) \\
& x\left(t+\frac{3 h}{2}\right)=x\left(t+\frac{h}{2}\right)+h f(x(t+h), t+h)
\end{aligned}
$$

Leypfrog is uetoralls les cecurato then RK4 in torms of out and out error propogater. So why evar use it? The consur is thad lesplory is sympleita This meers that it is tome symmetrio If you cun lesplrog bochmonds you end,y with identical equateins (io $t \rightarrow-t$). Not towo for KK4 RK4 is not symmet.c.

If you duit here syminety, the you den $\&$ concerve energy

Verlet (Estansen of Lexploys) Generally applex to equatrous motten. Corider Nater's equatious

$$
\frac{d^{2} x}{d t^{2}}=f(x, t)
$$

ez $\frac{d^{2} x}{d t^{2}}=-\frac{G M \vec{x}}{x^{3}}$
$\left(\begin{array}{l}\text { or the venter esquinalat }(\vec{x} \rightarrow \vec{r}) \\ \text { more }\end{array}\right.$ in $)$
Ve an convert thes equaton of motern inte capled eynit order equations

$$
\begin{align*}
& \frac{d x}{d t}=v \tag{1}\\
& \frac{d v}{d t}=f(\geqslant t) \tag{2}
\end{align*}
$$

If we mut a aysly tres loyplog methab to toreno equatems he (1) (1) and (2,) Aldine a vermal statests would be to

$$
\vec{r}=(\vec{x}, \vec{v})
$$

and comline (1) and (2) into a singts vecton and salve, is

$$
\begin{equation*}
\frac{d \vec{n}}{d t}=f(\vec{r}, t) \tag{3}
\end{equation*}
$$

Rather than gang thes routo haver let is unito aut to lay loy methed is full as osslaed 务 (1) and (2)
If we ce given tor value of $\overrightarrow{\vec{x}}$ at tene $t+\frac{h}{2}$ ad $\angle \vec{x}$ at at \vec{x} t then gsplepiss $L F$ we have

$$
\begin{aligned}
& x(t+h)=x(t)+h v\left(t+\frac{h}{2}\right) \\
& v\left(t+\frac{3 h}{2}\right)=v\left(t+\frac{h}{2}\right)+h f(x(t+h), t+h)
\end{aligned}
$$

We here stuck x res ozinal \vec{x} and \vec{v} Cusload of $\vec{\pi}$) and deire
a full solution at the problem by urine just these tiro equates.
Repeaters tore equators salves an problem on improvement over $\angle F$ which would required \vec{r} at both tiv full and half-paints

If wily vols fo specific topees equations where fo example Newton's equations sta RHS witt depends any in \vec{v} while ter o RHTS of (2) depends an dy an \vec{x} A slight isms aries uh en calculates total energies. in the care so yefocits must be computes at it full step using on Euler step
Putting all of this together we can now no to ant site full procedure for Varlet.
Given ter instal value of \vec{x} ad \vec{v} at some tome t

$$
\begin{align*}
& v\left(t+\frac{1}{2} h\right)=v(t)+\frac{1}{2} h f(x(t), t) \tag{vi}\\
& x(t+h)=x(t)+h v\left(t+\frac{h}{2}\right) \tag{v2}
\end{align*}
$$

$$
\begin{array}{cc}
k=h f(x(t+h), t+h) & (v 3) \\
v\left(t+\frac{3 h}{2}\right)=v\left(t+\frac{h}{2}\right)+u & \text { (opttenal) } \\
v\left(t+\frac{3 h}{2}\right)=v\left(t+\frac{h}{2}\right)+u & \text { (v4) }
\end{array}
$$

Final Luater
Leupfrog intogration
Given an ODE of form

$$
\frac{d x}{d t}=f(x, t)
$$

(1) Calculate x at the $\frac{1}{2}$ stap

$$
x\left(t+\frac{h}{2}\right)=x(t)+\frac{h}{2} f(x t) \quad\binom{\text { Eub }}{\text { Inthach }}
$$

(2) Now gives, Tow valus of $x(t)$ and $x\left(t+\frac{t}{2}\right)$ we -igpentalls gying teto legploy equatiox

$$
\begin{aligned}
& x(t+h)=x(t)+h f\left(x\left(t+\frac{h}{2}\right), t+\frac{h}{2}\right) \\
& x\left(t+\frac{3 h}{2}\right)=x\left(t+\frac{h}{2}\right)+h f(x(t+h), t+h)
\end{aligned}
$$

calculinits values at bath fell and bulf stos

Valet integration
The valet sehme is a darintivi

consider following

$$
\frac{d^{2} x}{d t^{2}}=f(x, t)
$$

Thu cen be writhes as

$$
\begin{aligned}
& \frac{d x}{d t}=v \\
& \frac{d v}{d t}=f(x, t)
\end{aligned}
$$

For Dux special cone of mater the varlet algorithm can be weed
With gselyng lapflozz we would constant

$$
\vec{r}=(\vec{x}, \vec{v})
$$

and solve at batt the full she and half steps.

Howener, vollet allens us to be affient. Syppose we know the at t_{0} and
v at $t_{0}+\frac{h}{2}$ then rith verlet alyor thmo tooks live
(1) $v\left(t+\frac{1}{2} h\right)=v(t)+\frac{1}{2} f(x, t)$
(2) $x(t+h)=x(t)+h r\left(t+\frac{h}{2}\right)$
(3) $v\left(t+\frac{3 h}{2}\right)=v\left(t+\frac{1}{2} h\right)+h f(x(t+h), t+h)$

